Advertisements
Advertisements
प्रश्न
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
उत्तर
Given:
If f(x) is continuous at x = 0, then
\[\Rightarrow \frac{1}{a} \times 1 - \left( - \frac{1}{b} \right) \times 1 = f\left( 0 \right) \left[ \text{ Using } : \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow \frac{1}{a} + \frac{1}{b} = f\left( 0 \right)\]
\[ \Rightarrow \frac{a + b}{ab} = f\left( 0 \right)\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if } x < 0 \\ \cos 2x , & \text{ if } x \geq 0\end{cases}\]
The function \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if } \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
Show that f (x) = cos x2 is a continuous function.
What happens to a function f (x) at x = a, if
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
Determine the value of the constant 'k' so that function f
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
The function
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
The function f (x) = 1 + |cos x| is
The function f(x) = `"e"^|x|` is ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
The function f(x) = 5x – 3 is continuous at x =
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
Discuss the continuity of the following function:
f(x) = sin x – cos x