Advertisements
Advertisements
प्रश्न
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
उत्तर
(i) f (x) = cos (x)
Let c be any real number.
If f(x) is continuous at x = c, this implies:
f(c) = `lim_(x -> c^+) f(x) = lim_(x -> c^-) f (x)`
⇒ (cos c) = (cos c) = (cos c)
which is true, i.e. f(x) is continuous at every point on the real number line.
(ii) f(x) = cosec (x)
Let c be any real number.
If f(x) is continuous at x = c, this implies:
f(c) = `lim_(x ->^+) f(x) = lim_(x -> c^-) f(x)`
`=>` (cosec c) = (cosec c) = (cosec c)
which is true, i.e. f(x) is continuous at every point on the real number line.
(iii) f(x) = sec (x)
Let c be any real number.
If f(x) is continuous at x = c, this implies:
f(c) = `lim_(x -> c^+) f(x) = lim_(x -> c^-) f(x)`
`=>` (sec c) = (sec c) = (sec c)
which is true, i.e. f(x) is continuous at every point on the real number line.
(iv) f(x) = cot (x)
Let c be any real number such that (n - 1)`pi < x < npi,` where n represents an integer point.
If f(x) is continuous at x = c, this implies:
f(c) `= lim_(x -> c^+) f (x) = lim_(x -> c^-) f(x)`
`=>` (cot c) = (cot c) = (cot c)
Which is true, i.e. f(x) is continuous at every point on the real number line between (n - 1)`pi` and `n pi`.
Now if we consider c such that c = `n pi` where n represents an integer point, then:
If f(x) is continuous at x = c, this implies:
f(c) `= lim_(x -> c^+) f(x) = lim_(x -> c^-) f(x)`
`=> pm infty = pm infty = pm infty`
That is, f(x) is continuous at every point on the real number line except at the `n pi` type points.
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Examine sin |x| is a continuous function.
Find the values of a so that the function
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if } } 1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
Determine the value of the constant 'k' so that function f
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
The function
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
Find the values of a and b so that the function
Find the values of a and b, if the function f defined by
The function f (x) = |cos x| is
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
The function f(x) = `"e"^|x|` is ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x