Advertisements
Advertisements
प्रश्न
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
विकल्प
\[\frac{2}{3}\]
6
2
4
उत्तर
2
For f(x) to be continuous at x = 0, we must have
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - 3}{9 - 3 \left( 243 + 5x \right)^\frac{1}{5}}\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{3\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}\]
\[ = \frac{1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}{x}}\]
\[ = \frac{- 1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{- 2x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{5x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{27 - 2x - 27}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{243 + 5x - 243}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times {27}^\frac{- 2}{3}}{\frac{1}{5} \times {243}^\frac{- 4}{5}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times \frac{1}{{27}^\frac{2}{3}}}{\frac{1}{5} \times \frac{1}{{243}^\frac{4}{5}}}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Show that the function defined by f (x) = cos (x2) is a continuous function.
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
If \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if } x \geq 0 \\ - 2 x^2 + k, & \text{ if } x < 0\end{cases}\] then what should be the value of k so that f(x) is continuous at x = 0.
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
The function \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if } \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Discuss the continuity of f(x) = sin | x |.
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
What happens to a function f (x) at x = a, if
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
Determine the value of the constant 'k' so that function f
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is
Find the values of a and b, if the function f defined by
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
The function f(x) = `"e"^|x|` is ______.
Let f(x) = |sin x|. Then ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = 5x – 3 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`