हिंदी

Find the values of a and b so that the function f given by f ( x ) = ⎧ ⎨ ⎩ 1 , if x ≤ 3 a x + b , if 3 < x < 5 7 , if x ≥ 5 is continuous at x = 3 and x = 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.

योग

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}1, \text{ if } x \leq 3 \\ ax + b,  \text{ if }  3 < x < 5 \\ 7, \text{ if } x \geq 5\end{cases}\]

We have
(LHL at x = 3) = 

\[\lim_{x \to 3^-} f\left( x \right) = \lim_{h \to 0} f\left( 3 - h \right)\]
\[= \lim_{h \to 0} \left( 1 \right) = 1\]

(RHL at x = 3) = 

\[\lim_{x \to 3^+} f\left( x \right) = \lim_{h \to 0} f\left( 3 + h \right)\]
\[= \lim_{h \to 0} a\left( 3 + h \right) + b = 3a + b\]

(LHL at x = 5) = 

\[\lim_{x \to 5^-} f\left( x \right) = \lim_{h \to 0} f\left( 5 - h \right)\]
\[= \lim_{h \to 0} \left( a\left( 5 - h \right) + b \right) = 5a + b\]

(RHL at x = 5) = 

\[\lim_{x \to 5^+} f\left( x \right) = \lim_{h \to 0} f\left( 5 + h \right)\]
\[= \lim_{h \to 0} 7 = 7\]

If f(x) is continuous at x = 3 and 5, then 

\[\lim_{x \to 3^-} f\left( x \right) = \lim_{x \to 3^+} f\left( x \right) \text{ and }  \lim_{x \to 5^-} f\left( x \right) = \lim_{x \to 5^+} f\left( x \right)\]
\[\Rightarrow 1 = 3a + b . . . \left( 1 \right) \text{ and }  5a + b = 7 . . . \left( 2 \right)\]

On solving eqs. (1) and (2), we get

\[a = 3 \text{ and }  b = - 8\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 37 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine sin |x| is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


Show that f (x) = | cos x | is a continuous function.

 

Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The function f(x) = x2 – sin x + 5 is continuous at x =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×