Advertisements
Advertisements
प्रश्न
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
विकल्प
1
2
3
none of these
उत्तर
none of these
For f(x) to be continuous at \[x = 0\] , we must have
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow \lim_{x \to 0} \left[ \frac{\frac{\left( 4^x - 1 \right)^3}{x^3}}{\frac{\sin\frac{x}{a}\log\left( 1 + \frac{x^2}{3} \right)}{x^3}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow \lim_{x \to 0} \left[ \frac{a \left( \frac{4^x - 1}{x} \right)^3}{\left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right)\frac{\log\left( 1 + \frac{x^2}{3} \right)}{x^2}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a \lim_{x \to 0} \left[ \frac{\left( \frac{4^x - 1}{x} \right)^3}{\left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right)\frac{\log\left( 1 + \frac{x^2}{3} \right)}{\left( \frac{x^2}{3} \right)}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a\left[ \frac{\lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)^3}{\lim_{x \to 0} \left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right) \lim_{x \to 0} \frac{\log\left( 1 + \frac{x^2}{3} \right)}{\left( \frac{x^2}{3} \right)}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a \left( \log 4 \right)^3 = 12 \left( \log 4 \right)^3 \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = \log a, \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 and \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ \Rightarrow a = 4\]
APPEARS IN
संबंधित प्रश्न
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Find the values of a so that the function
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
The function
If \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
The function f (x) = |cos x| is
Let f (x) = |cos x|. Then,
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
The function f(x) = 5x – 3 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
Discuss the continuity of the following function:
f(x) = sin x – cos x