मराठी

The Value of a for Which the Function F ( X ) = ⎧ ⎨ ⎩ ( 4 X − 1 ) 3 Sin ( X / a ) Log { ( 1 + X 2 / 3 ) } , X ≠ 0 12 ( Log 4 ) 3 , X = 0 May Be Continuous at X = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 

पर्याय

  • 1

  • 2

  • 3

  • none of these

MCQ

उत्तर

none of these 

For f(x) to be continuous at  \[x = 0\] , we must have 

 \[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

\[\lim_{x \to 0} \left[ \frac{\left( 4^x - 1 \right)^3}{\sin\frac{x}{a} \log\left( 1 + \frac{x^2}{3} \right)} \right] = 12 \left( \log 4 \right)^3\]

 \[\Rightarrow \lim_{x \to 0} \left[ \frac{\frac{\left( 4^x - 1 \right)^3}{x^3}}{\frac{\sin\frac{x}{a}\log\left( 1 + \frac{x^2}{3} \right)}{x^3}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow \lim_{x \to 0} \left[ \frac{a \left( \frac{4^x - 1}{x} \right)^3}{\left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right)\frac{\log\left( 1 + \frac{x^2}{3} \right)}{x^2}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a \lim_{x \to 0} \left[ \frac{\left( \frac{4^x - 1}{x} \right)^3}{\left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right)\frac{\log\left( 1 + \frac{x^2}{3} \right)}{\left( \frac{x^2}{3} \right)}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a\left[ \frac{\lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)^3}{\lim_{x \to 0} \left( \frac{\sin\frac{x}{a}}{\frac{x}{a}} \right) \lim_{x \to 0} \frac{\log\left( 1 + \frac{x^2}{3} \right)}{\left( \frac{x^2}{3} \right)}} \right] = 12 \left( \log 4 \right)^3 \]
\[ \Rightarrow 3a \left( \log 4 \right)^3 = 12 \left( \log 4 \right)^3 \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = \log a, \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 and \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ \Rightarrow a = 4\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 23 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


Show that f (x) = | cos x | is a continuous function.

 

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


The function f(x) = `"e"^|x|` is ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The function f(x) = 5x – 3 is continuous at x =


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×