Advertisements
Advertisements
प्रश्न
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
उत्तर
Given:
\[\Rightarrow \lim_{x \to 0} \frac{10 \sin 10x}{10x} = f\left( 0 \right)\]
\[ \Rightarrow 10 \lim_{x \to 0} \frac{\sin 10x}{10x} = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = 10\]
APPEARS IN
संबंधित प्रश्न
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
The function \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if } \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
Determine the value of the constant 'k' so that function f
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
Let \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\] The value which should be assigned to f (x) at \[x = \frac{\pi}{4},\]so that it is continuous everywhere is
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
The function f (x) = 1 + |cos x| is
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = x2 – sin x + 5 is continuous at x =
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.
The function f(x) = x |x| is ______.