Advertisements
Advertisements
प्रश्न
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
पर्याय
2
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
\[\frac{2}{3}\]
उत्तर
\[\frac{1}{3}\]
If f(x) is continuous at x = 0, then
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{x\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{x\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right)}{2 + \lim_{x \to 0} \left( \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - 1}{2 + 1} = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
If \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, find k.
Extend the definition of the following by continuity
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
If \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if } x \geq 0 \\ - 2 x^2 + k, & \text{ if } x < 0\end{cases}\] then what should be the value of k so that f(x) is continuous at x = 0.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Show that f (x) = cos x2 is a continuous function.
What happens to a function f (x) at x = a, if
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
If \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
Find the values of a and b, if the function f defined by
The function f (x) = |cos x| is
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
Let f (x) = |cos x|. Then,
The function f (x) = 1 + |cos x| is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
Discuss the continuity of the following function:
f(x) = sin x + cos x