मराठी

Find the Values of a and B, If the Function F Defined by F ( X ) = { X 2 + 3 X + a , X ⩽ 1 B X + 2 , X > 1 is Differentiable at X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

उत्तर

Given that f(x) is differentiable at x = 1. Therefore,  f(x) is continuous at x = 1. 

\[\lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
\[ \Rightarrow \lim_{x \to 1} \left( x^2 + 3x + a \right) = \lim_{x \to 1} \left( bx + 2 \right) = 1 + 3 + a\]
\[ \Rightarrow 1 + 3 + a = b + 2\]
\[ \Rightarrow a - b + 2 = 0 . . . . . \left( 1 \right)\]

Again, f(x) is differentiable at x = 1. So,

(LHD at x = 1) = (RHD at x = 1) 

\[\Rightarrow \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]

\[\lim_{x \to 1} \frac{\left( x^2 + 3x + a \right) - \left( 4 + a \right)}{x - 1} = \lim_{x \to 1} \frac{\left( bx + 2 \right) - \left( 4 + a \right)}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1} = \lim_{x \to 1} \frac{\left( bx - 2 - a \right)}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1} \frac{\left( x + 4 \right)\left( x - 1 \right)}{x - 1} = \lim_{x \to 1} \frac{bx - b}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1} \left( x + 4 \right) = \lim_{x \to 1} \frac{b\left( x - 1 \right)}{x - 1}\]
\[ \Rightarrow 5 = b\]

Putting b = 5 in (1), we get
a = 3
Hence, a = 3 and = 5.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.1 | Q 11 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Show that f (x) = cos x2 is a continuous function.


Show that f (x) = | cos x | is a continuous function.

 

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The function f (x) = |cos x| is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


The function f(x) = x2 – sin x + 5 is continuous at x =


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×