मराठी

If F (X) = (X + 1)Cot X Be Continuous at X = 0, Then F (0) is Equal to (A) 0 (B) 1/E (C) E (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 

पर्याय

  • 0

  • 1/e

  • e

  • none of these

MCQ

उत्तर १

Suppose 

\[f\left( x \right)\]  is continuous at  \[x = 0 .\]
Given:
\[f\left( x \right) = \left( x + 1 \right)^{\text{ cot } x}\]

\[\log f\left( x \right) = \left( \cot x \right) \left( \log \left( x + 1 \right) \right) \left[ \text{ Taking log on both sides }  \right]\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \cot x \right) \left( \log \left( x + 1 \right) \right)\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{\tan x} \right)\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \frac{\left( \frac{\log \left( x + 1 \right)}{x} \right)}{\left( \frac{\tan x}{x} \right)}\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]

\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)} \left[ \because f\left( x \right)\text{ is continuous at } x = 0 \right]\]

\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = 1\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = e\]

\[ \Rightarrow f\left( 0 \right) = e \left[ \because f\left( x \right) \text{ is continuous at }  x = 0 \right]\]

shaalaa.com

उत्तर २

For continuity at x = 0, we must have 

f(0) = `lim_("x"->0) "f"("x")`

`=lim_(x->0) ("x" + 1)^"cot x" = lim_(x->0) [(1 + "x")^(1/"x")]^("x cot x")`

`= lim_("x"->0)[(1 + "x")^(1/"x")]^(lim_("x"->0)("x"/("tan x"))) = "e"^1 = e`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 7 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Show that the function defined by f(x) = |cos x| is a continuous function.


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\]  then f (x) is


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


The function f (x) = 1 + |cos x| is


Let f(x) = |sin x|. Then ______.


`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


The function f(x) = 5x – 3 is continuous at x =


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×