Advertisements
Advertisements
प्रश्न
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
पर्याय
0
1/e
e
none of these
उत्तर १
Suppose
\[\log f\left( x \right) = \left( \cot x \right) \left( \log \left( x + 1 \right) \right) \left[ \text{ Taking log on both sides } \right]\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \cot x \right) \left( \log \left( x + 1 \right) \right)\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{\tan x} \right)\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \frac{\left( \frac{\log \left( x + 1 \right)}{x} \right)}{\left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)} \left[ \because f\left( x \right)\text{ is continuous at } x = 0 \right]\]
\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = 1\]
\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = e\]
\[ \Rightarrow f\left( 0 \right) = e \left[ \because f\left( x \right) \text{ is continuous at } x = 0 \right]\]
उत्तर २
For continuity at x = 0, we must have
f(0) = `lim_("x"->0) "f"("x")`
`=lim_(x->0) ("x" + 1)^"cot x" = lim_(x->0) [(1 + "x")^(1/"x")]^("x cot x")`
`= lim_("x"->0)[(1 + "x")^(1/"x")]^(lim_("x"->0)("x"/("tan x"))) = "e"^1 = e`
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`
Show that the function defined by f(x) = |cos x| is a continuous function.
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
The function \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if } \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
Determine the value of the constant 'k' so that function f
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
Find the values of a and b, if the function f defined by
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
Let f (x) = |cos x|. Then,
The function f (x) = 1 + |cos x| is
Let f(x) = |sin x|. Then ______.
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
The function f(x) = 5x – 3 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
The function f(x) = x |x| is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x