मराठी

If F ( X ) = ⎧ ⎨ ⎩ 1 − Sin X ( π − 2 X ) 2 . Log Sin X Log ( 1 + π 2 − 4 π X + 4 X 2 ) , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 

पर्याय

  • \[- \frac{1}{16}\] 

  • \[- \frac{1}{32}\] 

  • \[- \frac{1}{64}\] 

  • \[- \frac{1}{28}\]

MCQ

उत्तर

\[\frac{- 1}{64}\]

If \[f\left( x \right)\]  is continuous at  \[x = \frac{\pi}{2}\] ,then 

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]

\[\text{ If }\frac{\pi}{2} - x = t, \text{ then} \]

\[ \Rightarrow \lim_{t \to 0} f\left( \frac{\pi}{2} - t \right) = f\left( \frac{\pi}{2} \right)\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{1 - \sin \left( \frac{\pi}{2} - t \right)}{4 t^2} \times \frac{\log \sin \left( \frac{\pi}{2} - t \right)}{\log\left( 1 + \pi^2 - 4\pi\left( \frac{\pi}{2} - t \right) + 4 \left( \frac{\pi}{2} - t \right)^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 + \pi^2 - 2 \pi^2 + 4\pi t + 4\left( \frac{\pi^2}{4} + t^2 - \pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 - \pi^2 + 4\pi t + \left( \pi^2 + 4 t^2 - 4\pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{2 \sin^2 \frac{t}{2}}{16 \times \frac{t^2}{4}} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \frac{2}{16} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t^2}{4} \right)} \times \frac{\log \cos t}{\left( \frac{4 t^2 \log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \cos t}{4 t^2} \right)}{\left( \frac{\log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \sqrt{1 - \sin^2 t}}{4 t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{\left( 8 t^2 \right)} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( \lim_{t \to 0} \left( \frac{\sin\frac{t}{2}}{\left( \frac{t}{2} \right)} \right)^2 \times \frac{\lim_{t \to 0} \left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\lim_{t \to 0} \left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( 1 \times \lim_{t \to 0} \frac{\left( - \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \frac{\left( \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log \left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log\left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow k = \frac{- 1}{64} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 - x \right)}{x} = 1 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 6 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine sin |x| is a continuous function.


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Discuss the continuity of f(x) = sin | x |.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The function f(x) = 5x – 3 is continuous at x =


The function f(x) = x2 – sin x + 5 is continuous at x =


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×