Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
पर्याय
\[- \frac{1}{16}\]
\[- \frac{1}{32}\]
\[- \frac{1}{64}\]
\[- \frac{1}{28}\]
उत्तर
If \[f\left( x \right)\] is continuous at \[x = \frac{\pi}{2}\] ,then
\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\text{ If }\frac{\pi}{2} - x = t, \text{ then} \]
\[ \Rightarrow \lim_{t \to 0} f\left( \frac{\pi}{2} - t \right) = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \lim_{t \to 0} \left( \frac{1 - \sin \left( \frac{\pi}{2} - t \right)}{4 t^2} \times \frac{\log \sin \left( \frac{\pi}{2} - t \right)}{\log\left( 1 + \pi^2 - 4\pi\left( \frac{\pi}{2} - t \right) + 4 \left( \frac{\pi}{2} - t \right)^2 \right)} \right) = k\]
\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 + \pi^2 - 2 \pi^2 + 4\pi t + 4\left( \frac{\pi^2}{4} + t^2 - \pi t \right) \right)} \right) = k\]
\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 - \pi^2 + 4\pi t + \left( \pi^2 + 4 t^2 - 4\pi t \right) \right)} \right) = k\]
\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]
\[ \Rightarrow \lim_{t \to 0} \left( \frac{2 \sin^2 \frac{t}{2}}{16 \times \frac{t^2}{4}} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]
\[ \Rightarrow \frac{2}{16} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t^2}{4} \right)} \times \frac{\log \cos t}{\left( \frac{4 t^2 \log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[\]
\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \cos t}{4 t^2} \right)}{\left( \frac{\log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \sqrt{1 - \sin^2 t}}{4 t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{\left( 8 t^2 \right)} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[ \Rightarrow \frac{1}{64} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[ \Rightarrow \frac{1}{64}\left( \lim_{t \to 0} \left( \frac{\sin\frac{t}{2}}{\left( \frac{t}{2} \right)} \right)^2 \times \frac{\lim_{t \to 0} \left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\lim_{t \to 0} \left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]
\[ \Rightarrow \frac{1}{64}\left( 1 \times \lim_{t \to 0} \frac{\left( - \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]
\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \frac{\left( \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]
\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log \left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]
\[\]
\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log\left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]
\[ \Rightarrow k = \frac{- 1}{64} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 - x \right)}{x} = 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine sin |x| is a continuous function.
Find the values of a so that the function
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
Discuss the continuity of f(x) = sin | x |.
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Determine the value of the constant 'k' so that function f
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
Find the values of a and b, if the function f defined by
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = 5x – 3 is continuous at x =
The function f(x) = x2 – sin x + 5 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
The function f(x) = x |x| is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x