मराठी

Discuss the Continuity of F(X) = Sin | X |. - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of f(x) = sin | x |.

बेरीज

उत्तर

`" Let "  f(x)=sin  |x| `

This function f is defined for every real number and f can be written as the composition of two functions as, f = h o g, where g (x) = |x| and h (x) = sin x

\[\left[ \because hog\left( x \right) =  h\left( g\left( x \right) \right) = h\left( \left| x \right| \right) = \sin \left| x \right| \right]\]

It has to be proved first that `g(x)=|x|` and `h(x)=sinx` are continous function .

`g(x)=|x|`can be written as

`g(x)=[[-x,  if x <  0],[x,   if x≥ 0]]`

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

`if c < 0     " then "  g(c)=-c ` and `lim_(x->c)g(x)=lim_(x->c)(-x)=-c`

`∴lim_(x->c) g (x) = g(c)`

Therefore, g is continuous at all points x > 0

Case III: 

`  " If " c=0, `then `g(c)=g(0)=0`

`lim_(x->0)g(x)=lim_(x->0)(x)=0`

`lim_(x->0)g(x)=lim_(x->0)(x)=0`

`∴lim_(x->0)g(x)=lim(x)=g(0)`

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

Now, h (x) = sin x

It is evident that h (x) = sin x is defined for every real number.

Let be a real number.
Put x = c + k

If x → c, then k → 0

(c) = sin c

`h(c)=sin  c`

`lim_(x->c)(x)=lim_(x->c)sin x`

                `=lim_(k->0)sin(c+k)`

                `=lim_(k->0)[sin c cos k + cos  c sin  k]`

               `= lim_(k->0)(sin  c  cos  k)+lim_(k->0)(cos  c  sin   k)`

               `=sin c  cos  0 + cos c sin 0`

              `=sin  c+0`

             `=sin c`

`∵lim_(x->c)h(x)=g(c)`

So, h is a continuous function.

\[\therefore f\left( x \right) = hog\left( x \right) = h\left( g\left( x \right) \right) = h\left( \left| x \right| \right) = \sin \left| x \right|\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 10 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Show that the function defined by f (x) = cos (x2) is a continuous function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


Show that f (x) = cos x2 is a continuous function.


Show that f (x) = | cos x | is a continuous function.

 

What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\]  then f (x) is


Let f (x) = |cos x|. Then,


Let f(x) = |sin x|. Then ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×