Advertisements
Advertisements
प्रश्न
Show that f (x) = | cos x | is a continuous function.
उत्तर
The given function is `f(x)=|cos x|`
This function f is defined for every real number and f can be written as the composition of two functions as,
f = g o h, where `g(x)=|x| and h(x)=cos x`
`[∵(goh)(x)=g(h(x))=g(cos x)=|cos x|=f(x)]`
It has to be first proved that `g(x)=|x| and h(x)=cos x` are continuous functions.
`g(x)=|x| " can be written as " `
`g(x)=[[-x,if x≤ 0],[x,if x ≥ 0]]`
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
`if c < 0 " then " g (c)= -c and lim\_(x->c)(-x)=-c`
`∴ lim_(x->c)g(x)=g(c)`
So, g is continuous at all points x < 0.
Case II:
`" if c < 0 then " g (c)= -c and lim\_(x->c)(-x)=-c`
`∴ lim_(x->c)g(x)=g(c)`
So, g is continuous at all points x > 0.
Case III:
`if c = 0 , " then " g(c)=g(0)=0`
`lim_(x->0^-)g(x)=lim_(x->0^-)(-x)=0`
`lim_(x->0^+)g(x)=lim_(x->0^+)(x)=g(0)`
`∴lim_(x->0^+)g(x)=lim_(x->0^+)(x)=g(0)`
So, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
Now, h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
h (c) = cos c
`lim_(x->0)h(x)=lim_(x->0) cos x`
`=lim_(k->0) cos (c+h)`
`=lim_(k->0)[cos c cos h-sin c sin h]`
`=lim_(k->0)cos c cos 0 - sin c sin 0`
`= cos c xx1 - sin cxx0`
`= cos c`
`lim_(x->c)h(x)=h(c)`
So, h (x) = cos x is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at x = c, if g is continuous at x = c and if f is continuous at g (c), then (f o g) is continuous at x = c.
Therefore, `f(x)=(goh)(x)=g(h(x))=g(cos x)=|cos x|` is a continuous function.
APPEARS IN
संबंधित प्रश्न
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if } x < 0 \\ \cos 2x , & \text{ if } x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
Discuss the continuity of f(x) = sin | x |.
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Show that f (x) = cos x2 is a continuous function.
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
Determine the value of the constant 'k' so that function f
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
The function
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
The function f(x) = `"e"^|x|` is ______.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`
The function f(x) = x |x| is ______.