English

Show that F (X) = | Cos X | is a Continuous Function. - Mathematics

Advertisements
Advertisements

Question

Show that f (x) = | cos x | is a continuous function.

 
Sum

Solution

The given function is `f(x)=|cos x|`

This function f is defined for every real number and f can be written as the composition of two functions as,

f = g o h, where `g(x)=|x|  and  h(x)=cos  x`

`[∵(goh)(x)=g(h(x))=g(cos  x)=|cos  x|=f(x)]`

It has to be first proved that `g(x)=|x|  and  h(x)=cos x` are continuous functions.

`g(x)=|x| "  can be written as " `

`g(x)=[[-x,if x≤ 0],[x,if x ≥ 0]]`

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

`if c < 0 " then " g (c)= -c and lim\_(x->c)(-x)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points x < 0.

Case II:

`" if c < 0   then "  g (c)= -c and lim\_(x->c)(-x)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points x > 0.

Case III: 

`if  c = 0 , "  then " g(c)=g(0)=0`

`lim_(x->0^-)g(x)=lim_(x->0^-)(-x)=0`

`lim_(x->0^+)g(x)=lim_(x->0^+)(x)=g(0)`

`∴lim_(x->0^+)g(x)=lim_(x->0^+)(x)=g(0)`

So, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

Now, h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let be a real number.
Put x = c + h

If x → c, then h → 0

(c) = cos c

`lim_(x->0)h(x)=lim_(x->0) cos x`

                   `=lim_(k->0) cos (c+h)`

                   `=lim_(k->0)[cos  c  cos  h-sin  c sin h]`

                   `=lim_(k->0)cos  c cos 0 - sin  c sin 0`

                  `= cos  c xx1 - sin  cxx0`

                  `= cos  c`

`lim_(x->c)h(x)=h(c)`

So, h (x) = cos x is a continuous function.

It is known that for real valued functions and h,such that (h) is defined at x = c, if is continuous at x = and if is continuous at (c), then (g) is continuous at x = c.

Therefore, `f(x)=(goh)(x)=g(h(x))=g(cos x)=|cos x|` is a continuous function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 15 | Page 37

RELATED QUESTIONS

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Show that the function defined by f(x) = |cos x| is a continuous function.


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Show that f (x) = cos x2 is a continuous function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = |cos x| is


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


The function f(x) = 5x – 3 is continuous at x =


The function f(x) = x2 – sin x + 5 is continuous at x =


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×