English

Show that F (X) = Cos X2 is a Continuous Function. - Mathematics

Advertisements
Advertisements

Question

Show that f (x) = cos x2 is a continuous function.

Sum

Solution

Given: (x) = cos (x2)

This function f is defined for every real number and f can be written as the composition of two functions as

f = g o h, where g (x) = cos x and h (x) = x2

`[∵ (goh)(x)=g(h (x))=g(x^2)=cos(x^2)=f(x)]`

It has to be first proved that (x) = cos x and h (x) = x2 are continuous functions.

It is evident that g is defined for every real number.

Let c be a real number.

Then, g (c) = cos c

`"If"  x-> c , `then `h->0`

`lim_(x->c)g(x)=lim_(x->c)cos  x`

                  `=lim_(h->0)  cos (c+h)`

                  `=lim_(h->0)[cos c cos  h-sin c sin h]`

                  `=lim_(h->0) cos  c cos h -lim_(h->0) sin  c sin  h`

                  `=cos c cos 0-sin c sin 0`

                  `= cos  cxx1-sin cxx0`

                  `= cos c`

`∴lim_(x->c)g(x)=g(c)`

So, g (x) = cos x is a continuous function.

Now,
h (x) = x2

Clearly, h is defined for every real number.

Let k be a real number, then h (k) = k2

`lim_(x->k)h(x)=lim_(x->k) x^2=k^2`

`∴lim_(x->k)h(x)=h(k)`

So, h is a continuous function.

It is known that for real valued functions and h, such that (h) is defined at x = c, if is continuous at x = and if is continuous at (c), then, (g) is continuous at xc.

Therefore, `f(x)=(goh)(x)=cos(x^2)`is a continuous function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 14 | Page 37

RELATED QUESTIONS

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Show that the function defined by f (x) = cos (x2) is a continuous function.


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine sin |x| is a continuous function.


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = |cos x| is


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


Let f (x) = |cos x|. Then,


The function f (x) = 1 + |cos x| is


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The function f(x) = 5x – 3 is continuous at x =


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×