मराठी

The Function F(X) is Defined as Follows: F ( X ) = ⎧ ⎨ ⎩ X 2 + a X + B , 0 ≤ X < 2 3 X + 2 , 2 ≤ X ≤ 4 2 a X + 5 B , 4 < X ≤ 8 If F is Continuous on [0, 8], Find the Values of a and B. - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.

बेरीज

उत्तर

Given: is continuous on  \[\left[ 0, 8 \right]\] . 

∴ is continuous at x = 2 and x = 4

At x = 2, we have

\[\lim_{x \to 2^-} f\left( x \right) = \lim_{h \to 0} f\left( 2 - h \right) = \lim_{h \to 0} \left[ \left( 2 - h \right)^2 + a\left( 2 - h \right) + b \right] = 4 + 2a + b\]
\[\lim_{x \to 2^+} f\left( x \right) = \lim_{h \to 0} f\left( 2 + h \right) = \lim_{h \to 0} \left[ 3\left( 2 + h \right) + 2 \right] = 8\]

Also,
At x = 4, we have

\[\lim_{x \to 4^-} f\left( x \right) = \lim_{h \to 0} f\left( 4 - h \right) = \lim_{h \to 0} \left[ 3\left( 4 - h \right) + 2 \right] = 14\]
\[\lim_{x \to 4^+} f\left( x \right) = \lim_{h \to 0} f\left( 4 + h \right) = \lim_{h \to 0} \left[ 2a\left( 4 + h \right) + 5b \right] = 8a + 5b\]

is continuous at x = 2 and x = 4

∴  \[\lim_{x \to 2^-} f\left( x \right) = \lim_{x \to 2^+} f\left( x \right) and \lim_{x \to 4^-} f\left( x \right) = \lim_{x \to 4^+} f\left( x \right)\]

\[\Rightarrow 4 + 2a + b = 8\text{  and } 8a + 5b = 14\]
\[ \Rightarrow 2a + b = 4 . . . \left( 1 \right) \text{ and }  8a + 5b = 14 . . . \left( 2 \right)\]

On simplifying eqs. (1) and (2), we get

\[a = 3 \text{ and }  b = - 2\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 7 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


Discuss the continuity of f(x) = sin | x |.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\]  then f (x) is


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


The function f (x) = 1 + |cos x| is


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×