English

Discuss the Continuity of F(X) = Sin | X |. - Mathematics

Advertisements
Advertisements

Question

Discuss the continuity of f(x) = sin | x |.

Sum

Solution

`" Let "  f(x)=sin  |x| `

This function f is defined for every real number and f can be written as the composition of two functions as, f = h o g, where g (x) = |x| and h (x) = sin x

\[\left[ \because hog\left( x \right) =  h\left( g\left( x \right) \right) = h\left( \left| x \right| \right) = \sin \left| x \right| \right]\]

It has to be proved first that `g(x)=|x|` and `h(x)=sinx` are continous function .

`g(x)=|x|`can be written as

`g(x)=[[-x,  if x <  0],[x,   if x≥ 0]]`

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

`if c < 0     " then "  g(c)=-c ` and `lim_(x->c)g(x)=lim_(x->c)(-x)=-c`

`∴lim_(x->c) g (x) = g(c)`

Therefore, g is continuous at all points x > 0

Case III: 

`  " If " c=0, `then `g(c)=g(0)=0`

`lim_(x->0)g(x)=lim_(x->0)(x)=0`

`lim_(x->0)g(x)=lim_(x->0)(x)=0`

`∴lim_(x->0)g(x)=lim(x)=g(0)`

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

Now, h (x) = sin x

It is evident that h (x) = sin x is defined for every real number.

Let be a real number.
Put x = c + k

If x → c, then k → 0

(c) = sin c

`h(c)=sin  c`

`lim_(x->c)(x)=lim_(x->c)sin x`

                `=lim_(k->0)sin(c+k)`

                `=lim_(k->0)[sin c cos k + cos  c sin  k]`

               `= lim_(k->0)(sin  c  cos  k)+lim_(k->0)(cos  c  sin   k)`

               `=sin c  cos  0 + cos c sin 0`

              `=sin  c+0`

             `=sin c`

`∵lim_(x->c)h(x)=g(c)`

So, h is a continuous function.

\[\therefore f\left( x \right) = hog\left( x \right) = h\left( g\left( x \right) \right) = h\left( \left| x \right| \right) = \sin \left| x \right|\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 10 | Page 36

RELATED QUESTIONS

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Show that the function defined by f (x) = cos (x2) is a continuous function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×