English

The Function F\Left(X\Right)=\BeginCasesX2/A\TextIf0\LeqX<1a,and\TextIf1\LeqX<\Sqrt2\Frac2B24bX2,and\TextIf\Sqrt2\LeqX<\Infty\EndCases - Mathematics

Advertisements
Advertisements

Question

The function  f(x)={x2/a, if 0x<1a, if 1x<22b24bx2, if 2x< is continuous on (0, ∞), then find the most suitable values of a and b.

Sum

Solution

Given:  is continuous on  (0,)

 ∴  f is continuous at x = 1 and 2

At x = 1, we have

limx1f(x)=limh0f(1h)=limh0[(1h)2a]=1a
limx1+f(x)=limh0f(1+h)=limh0(a)=a

Also, 

At x = 2,

we have

limx2f(x)=limh0f(2h)=limh0(a)=a 
limx2+f(x)=limh0f(2+h)=limh0[2b24b(2+h)2]=2b24b2=b22b
 is continuous at x = 1 and 2
∴  limx1f(x)=limx1+f(x) and limx2f(x)=limx2+f(x)

1a=a and b22b=a
a2=1 and b22b=a
a=±1 and b22b=a...(1)

If a = 1, then

b22b=1[ From eq .(1)]
b22b1=0
b=2±4+42=2±222=1±2

If a = −1, then

b22b=1[ From eq .(1)]
b22b+1=0
(b1)2=0
b=1

Hence, the most suitable values of a and b are

a = −1, b = 1  or a = 1,

b=1±2
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.2 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.2 | Q 5 | Page 36

RELATED QUESTIONS

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


Find the relationship between a and b so that the function f defined by f(x)={ax+1ifx3bx+3ifx >3 is continuous at x = 3.


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

f(x)={kcosxπ-2x,ifxπ23,ifx=π2  at x = π2 


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine sin |x| is a continuous function.


Determine the value of the constant k so that the function

f(x)={sin2x5x,ifx0k,ifx=0is continuous at x=0.

 


Extend the definition of the following by continuity 

f(x)=1cos7(xπ)5(xπ)2  at the point x = π.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; f(x)={(x1)tanπx2, if x1k,ifx=1 at x = 1at x = 1


Prove that the function f(x)={sinxx,x<0x+1,x0  is everywhere continuous.

 


Discuss the continuity of the function  

f(x)={x|x|,x00,x=0.

Find the points of discontinuity, if any, of the following functions: f(x)={x416x2, if x216, if x=2


Find the points of discontinuity, if any, of the following functions:  f(x)={sinxx+cosx, if x05, if x=0


In the following, determine the value of constant involved in the definition so that the given function is continuou:  f(x)={sin2x5x, if x03k, if x=0 


If f(x)=tan(π4x)cot2x

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


If the function   f(x)=sin10xx,x0 is continuous at x = 0, find f (0).

 


If f(x)={sin1xx,x0k,x=0is continuous at x = 0, write the value of k.


The value of f (0), so that the function

f(x)=(272x)1/3393(243+5x)1/5(x0) is continuous, is given by 


If  f(x)=1sinx(π2x)2, when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


If the function  f(x)=2xsin1x2x+tan1x is continuous at each point of its domain, then the value of f (0) is 


If  f(x)=xsin1x,x0,then the value of the function at = 0, so that the function is continuous at x = 0, is

 


The value of a for which the function f(x)={5x4, if 0<x14x2+3ax, if 1<x<2 is continuous at every point of its domain, is 


If is defined by  f(x)=x24x+7 , show that f(5)=2f(72) 


The function f(x)=sin(π[xπ])4+[x]2 , where [⋅] denotes the greatest integer function, is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If f(x)={1cosxxsinx,x012,x=0 

then at x = 0, f (x) is


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of k the following function is continuous at the indicated point

f(x)={kx2,ifx23,ifx>2 at x = 2


For what value of k the following function is continuous at the indicated point

f(x)={kx+1,ifxπcosx,ifx>π at = π


Find the values of a and b such that the function by:

f(x)={5,if x2ax+b,if2<x<1021,ifx10

is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.