English

Let F (X) = a + B |X| + C |X|4, Where A, B, and C Are Real Constants. Then, F (X) is Differentiable at X = 0, If (A) a = 0 (B) B = 0 (C) C = 0 (D) None of These - Mathematics

Advertisements
Advertisements

Question

Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if

Options

  • a = 0

  • b = 0

  • c = 0

  • none of these

MCQ

Solution

(b) b = 0 

We have, 
\[f\left( x \right) = a + b\left| x \right| + c \left| x \right|^4 \]

`f(x) = {(a +bx +c|x|^4 ,xge 0),(a-bx +cx^4,x<0):}`
\[\text { Here }, f\left( x \right)\text {  is differentiable at x = 0 }\]
\[ \therefore \left(\text {  LHD at x } = 0 \right) = \left(\text {  RHD at x }= 0 \right)\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ \Rightarrow \lim_{x \to 0^-} \frac{a - bx + c x^4 - a}{x} = \lim_{x \to 0^+} \frac{a + bx + c x^4 - a}{x}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a - b\left( 0 - h \right) + c \left( 0 - h \right)^4 - a}{0 - h} = \lim_{h \to 0} \frac{a + b\left( 0 + h \right) + c \left( 0 + h \right)^4 - a}{0 + h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{a + bh + c h^4 - a}{- h} = \lim_{h \to 0} \frac{a + bh + c h^4 - a}{h}\]
\[ \Rightarrow \lim_{h \to 0} \frac{bh + c h^4}{- h} = \lim_{h \to 0} \frac{bh + c h^4}{h}\]
\[ \Rightarrow \lim_{h \to 0} \left( - b - c h^3 \right) = \lim_{h \to 0} \left( b + c h^3 \right)\]
\[ \Rightarrow - b = b\]
\[ \Rightarrow 2b = 0\]
\[ \Rightarrow b = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 21 | Page 19

RELATED QUESTIONS

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


Show that f (x) = | cos x | is a continuous function.

 

If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×