English

Let F ( X ) = Tan ( π 4 − X ) Cot 2 X , X ≠ π 4 . the Value Which Should Be Assigned to F (X) at X = π 4 , So that It is Continuous Everywhere is (A) 1 (B) 1/2 (C) 2 (D) None of These - Mathematics

Advertisements
Advertisements

Question

Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is

Options

  • 1

  • 1/2

  • 2

  • none of these

MCQ

Solution

 \[\frac{1}{2}\]

 If  \[f\left( x \right)\]  is continuous at  \[x = \frac{\pi}{4}\] 

\[\lim_{x \to \frac{\pi}{4}} f\left( x \right) = f\left( \frac{\pi}{4} \right)\]
\[\Rightarrow \lim_{x \to \frac{\pi}{4}} \frac{\tan \left( \frac{\pi}{4} - x \right)}{\cot 2x} = f\left( \frac{\pi}{4} \right)\]

If \[\frac{\pi}{4} - x = y\], then

\[x \to \frac{\pi}{4} \text{ and } y \to 0\]

\[\therefore \lim_{y \to 0} \left( \frac{\tan y}{\cot 2\left( \frac{\pi}{4} - y \right)} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\tan y}{\cot\left( \frac{\pi}{2} - 2y \right)} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\tan y}{\tan 2y} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{\tan 2y}{y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{2 \tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{\tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{\lim_{y \to 0} \frac{\tan y}{y}}{\lim_{y \to 0} \frac{\tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{1}{1} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow f\left( \frac{\pi}{4} \right) = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 29 | Page 46

RELATED QUESTIONS

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


The function f (x) = 1 + |cos x| is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


Let f(x) = |sin x|. Then ______.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


The function f(x) = x2 – sin x + 5 is continuous at x =


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×