हिंदी

Let F ( X ) = Tan ( π 4 − X ) Cot 2 X , X ≠ π 4 . the Value Which Should Be Assigned to F (X) at X = π 4 , So that It is Continuous Everywhere is (A) 1 (B) 1/2 (C) 2 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is

विकल्प

  • 1

  • 1/2

  • 2

  • none of these

MCQ

उत्तर

 \[\frac{1}{2}\]

 If  \[f\left( x \right)\]  is continuous at  \[x = \frac{\pi}{4}\] 

\[\lim_{x \to \frac{\pi}{4}} f\left( x \right) = f\left( \frac{\pi}{4} \right)\]
\[\Rightarrow \lim_{x \to \frac{\pi}{4}} \frac{\tan \left( \frac{\pi}{4} - x \right)}{\cot 2x} = f\left( \frac{\pi}{4} \right)\]

If \[\frac{\pi}{4} - x = y\], then

\[x \to \frac{\pi}{4} \text{ and } y \to 0\]

\[\therefore \lim_{y \to 0} \left( \frac{\tan y}{\cot 2\left( \frac{\pi}{4} - y \right)} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\tan y}{\cot\left( \frac{\pi}{2} - 2y \right)} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\tan y}{\tan 2y} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{\tan 2y}{y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{2 \tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\frac{\tan y}{y}}{\frac{\tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{\lim_{y \to 0} \frac{\tan y}{y}}{\lim_{y \to 0} \frac{\tan 2y}{2y}} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{1}{1} \right) = f\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow f\left( \frac{\pi}{4} \right) = \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 29 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Discuss the continuity of f(x) = sin | x |.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

Find the values of a and b, if the function f defined by 

\[f\left( x \right) = \begin{cases}x^2 + 3x + a & , & x \leqslant 1 \\ bx + 2 & , & x > 1\end{cases}\] is differentiable at = 1.

If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×