हिंदी

If F (X) = (X + 1)Cot X Be Continuous at X = 0, Then F (0) is Equal to (A) 0 (B) 1/E (C) E (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 

विकल्प

  • 0

  • 1/e

  • e

  • none of these

MCQ

उत्तर १

Suppose 

\[f\left( x \right)\]  is continuous at  \[x = 0 .\]
Given:
\[f\left( x \right) = \left( x + 1 \right)^{\text{ cot } x}\]

\[\log f\left( x \right) = \left( \cot x \right) \left( \log \left( x + 1 \right) \right) \left[ \text{ Taking log on both sides }  \right]\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \cot x \right) \left( \log \left( x + 1 \right) \right)\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{\tan x} \right)\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \frac{\left( \frac{\log \left( x + 1 \right)}{x} \right)}{\left( \frac{\tan x}{x} \right)}\]

\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]

\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)} \left[ \because f\left( x \right)\text{ is continuous at } x = 0 \right]\]

\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = 1\]

\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = e\]

\[ \Rightarrow f\left( 0 \right) = e \left[ \because f\left( x \right) \text{ is continuous at }  x = 0 \right]\]

shaalaa.com

उत्तर २

For continuity at x = 0, we must have 

f(0) = `lim_("x"->0) "f"("x")`

`=lim_(x->0) ("x" + 1)^"cot x" = lim_(x->0) [(1 + "x")^(1/"x")]^("x cot x")`

`= lim_("x"->0)[(1 + "x")^(1/"x")]^(lim_("x"->0)("x"/("tan x"))) = "e"^1 = e`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 7 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


Show that f (x) = | cos x | is a continuous function.

 

If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


The function f (x) = |cos x| is


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×