हिंदी

The Function \[F\Left( X \Right) = \Begin{Cases}X^2 /A \Text{ If } 0 \Leq X < 1 \\ a , and \Text{If}1 \Leq X< \Sqrt{2} \\ \Frac{2 B^2 - 4b}{X^2}, and \Text{ If } \Sqrt{2} \Leq X < \Infty\End{Cases}\] - Mathematics

Advertisements
Advertisements

प्रश्न

The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.

योग

उत्तर

Given:  is continuous on  \[\left( 0, \infty \right)\]

 ∴  f is continuous at x = 1 and \[\sqrt{2}\]

At x = 1, we have

\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left[ \frac{\left( 1 - h \right)^2}{a} \right] = \frac{1}{a}\]
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( a \right) = a\]

Also, 

At x = \[\sqrt{2}\],

we have

\[\lim_{x \to \sqrt{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \sqrt{2} - h \right) = \lim_{h \to 0} \left( a \right) = a\] 
\[\lim_{x \to \sqrt{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \sqrt{2} + h \right) = \lim_{h \to 0} \left[ \frac{2 b^2 - 4b}{\left( \sqrt{2} + h \right)^2} \right] = \frac{2 b^2 - 4b}{2} = b^2 - 2b\]
 is continuous at x = 1 and \[\sqrt{2}\]
∴  \[\lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) \text{ and }  \lim_{x \to \sqrt{2}^-} f\left( x \right) = \lim_{x \to \sqrt{2}^+} f\left( x \right)\]

\[\Rightarrow \frac{1}{a} = a \text{ and } b^2 - 2b = a\]
\[ \Rightarrow a^2 = 1 \text{ and }  b^2 - 2b = a\]
\[ \Rightarrow a = \pm 1 \text{ and } b^2 - 2b = a . . . \left( 1 \right)\]

If a = 1, then

\[b^2 - 2b = 1 \left[ \text{ From eq }  . (1) \right]\]
\[ \Rightarrow b^2 - 2b - 1 = 0\]
\[ \Rightarrow b = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}\]

If a = −1, then

\[b^2 - 2b = - 1 \left[ \text{ From eq }  . (1) \right]\]
\[ \Rightarrow b^2 - 2b + 1 = 0\]
\[ \Rightarrow \left( b - 1 \right)^2 = 0\]
\[ \Rightarrow b = 1\]

Hence, the most suitable values of a and b are

a = −1, b = 1  or a = 1,

\[b = 1 \pm \sqrt{2}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.2 | Q 5 | पृष्ठ ३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


Show that f (x) = cos x2 is a continuous function.


Show that f (x) = | cos x | is a continuous function.

 

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

Let f (x) = |cos x|. Then,


The function f (x) = 1 + |cos x| is


The function f(x) = `"e"^|x|` is ______.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


The function f(x) = 5x – 3 is continuous at x =


The function f(x) = x2 – sin x + 5 is continuous at x =


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×