हिंदी

In the Following, Determine the Value of Constant Involved in the Definition So that the Given Function is Continuou: F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ K Cos X π − 2 X , X < π 2 3 , - Mathematics

Advertisements
Advertisements

प्रश्न

In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]
योग

उत्तर

 Given: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, x < \frac{\pi}{2} \\ 3 , x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, x > \frac{\pi}{2}\end{cases}\] 
If  \[f\left( x \right)\]  is continuous at x = \[\frac{\pi}{2}\] , then 
\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\Rightarrow \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right) = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right) = 3\]
\[ \Rightarrow \lim_{h \to 0} \left[ \frac{k \cos \left( \frac{\pi}{2} - h \right)}{\pi - 2\left( \frac{\pi}{2} - h \right)} \right] = 3\]
\[ \Rightarrow \lim_{h \to 0} \left[ \frac{k \sin h}{\pi - \pi + 2h} \right] = 3\]
\[ \Rightarrow \lim_{h \to 0} \left[ \frac{k \sin h}{2h} \right] = 3\]
\[ \Rightarrow \frac{k}{2} \lim_{h \to 0} \left[ \frac{\sin h}{h} \right] =3\]
\[ \Rightarrow \frac{k}{2} = 3\]
\[ \Rightarrow k = 2(3) = 6\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.2 | Q 4.8 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


The function f (x) = tan x is discontinuous on the set

 


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


`lim_("x"-> 0) sqrt(1/2 (1 - "cos"  2"x"))/"x"` is equal to


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


How many point of discontinuity for the following function in its. domain.

`f(x) = {{:(x/|x|",", if  x < 0),(-1",", if x ≥ 0):}`


Sin |x| is a continuous function for


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×