हिंदी

Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.

योग

उत्तर

The given function is:

f(x) = 5x - 3

f(0) = 5(0) - 3 = -3

`lim_(x → 0) f(x) = 5(0) - 3 = -3`

`lim_(x → 0) f(x) = f(0)`

Hence, the function is continuous at x = 0

f(-3) = 5(-3) - 3

= -15 - 3

= -18

⇒ `lim_(x → -3) f(x) = 5(-3) - 3`

= -15 - 3

= -18

⇒ `lim_(x → -3) f(x) = f(-3)`

Hence , function is continous at x = -3

f(5) = 5(5) - 3

= 25 - 3

= 22

⇒ `lim_(x → 5) f(x) `

= 5(5) - 3

= 25 - 3

= -22

⇒ `lim_(x → 5) f(x) = f(5)`

Hence , function is continuous at x = 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.1 [पृष्ठ १५९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.1 | Q 1 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Show that the function defined by  g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

The function f (x) = tan x is discontinuous on the set

 


Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×