हिंदी

Find all points of discontinuity of the function f(t) = tt1t2+t-2, where t = 1x-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`

योग

उत्तर

We have, f(t) = `1/("t"^2 + "t" - 2)`

Where t = `1/(x - 1)`

∴ f(t) = `1/((1/(x - 1))^2 + 1/(x - 1) - 2)`

= `(x - 1)^2/(1 + (x - 1) - 2(x - 1)^2)`

= `(x - 1)^2/(-(2x^2 - 5x + 2))`

= `(x - 1)^2/((2x - 1)(2 - x))`

So, f(t) is discontinuous at 2x – 1 = 0

⇒ x = `1/2` and 2 – x = 0

⇒ x = 2

Also f(t) is discontinuous at x = 1, where t = `1/(x - 1)` is discontinuous.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 18 | पृष्ठ १०९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Is the function defined by `f(x) = {(x+5, if x <= 1),(x -5, if x > 1):}` a continuous function?


Find the points of discontinuity of f, where `f (x) = {(sinx/x, if x<0),(x + 1, if x >= 0):}`


Determine if f defined by `f(x) = {(x^2 sin  1/x, "," if x != 0),(0, "," if x = 0):}` is a continuous function?


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.


The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function in its. domain.

`f(x) = {{:(x/|x|",", if  x < 0),(-1",", if x ≥ 0):}`


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×