हिंदी

Show that the function f(x)=|x-3|,x in R is continuous but not differentiable at x = 3. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.

उत्तर

`f(x)=|x-3|={(3-x, x<3),(x-3,x>=3) :}`

Let c be a real number.

Case I: c < 3. Then f (c) = 3 − c.

`lim_(x->c)f(x)=lim_(x->c)(3-x)=3-c`

Since `lim_(x->c)f(x)=f(c)` f is continuous at all negative real numbers.

Case II: c = 3. Then f (c) = 3 − 3 = 0

`lim_(x->c)f(x)=lim_(x->c)(x-3)=3-3=0`

Since , `lim_(x->3)f(x)=f(3)` ,f is continuous at x = 3.

Case III: c > 3. Then f (c) = c − 3.

`lim_(x->c)f(x)=lim_(x->c)(x-3)=c-3`

Since `lim_(x->c)f(x)=f(c)`  f is continuous at all positive real numbers.

Therefore, f is continuous function.

We will now show that f(x)=|x-3|,x in R is not differentiable at x = 3.

Consider the left hand limit of f at x = 3

`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)-h/h=-1`

consider the right hand limit of f at x=3

`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)h/h=-1`

Since the left and right hand limits are not equal, f is not differentiable at x = 3.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if  x < 0),(3"," , if x >= 0):}` is continuous at x = 0


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function in its. domain.

`f(x) = {{:(x/|x|",", if  x < 0),(-1",", if x ≥ 0):}`


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


Sin |x| is a continuous function for


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×