Advertisements
Advertisements
प्रश्न
Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.
उत्तर
`f(x)=|x-3|={(3-x, x<3),(x-3,x>=3) :}`
Let c be a real number.
Case I: c < 3. Then f (c) = 3 − c.
`lim_(x->c)f(x)=lim_(x->c)(3-x)=3-c`
Since `lim_(x->c)f(x)=f(c)` f is continuous at all negative real numbers.
Case II: c = 3. Then f (c) = 3 − 3 = 0
`lim_(x->c)f(x)=lim_(x->c)(x-3)=3-3=0`
Since , `lim_(x->3)f(x)=f(3)` ,f is continuous at x = 3.
Case III: c > 3. Then f (c) = c − 3.
`lim_(x->c)f(x)=lim_(x->c)(x-3)=c-3`
Since `lim_(x->c)f(x)=f(c)` f is continuous at all positive real numbers.
Therefore, f is continuous function.
We will now show that f(x)=|x-3|,x in R is not differentiable at x = 3.
Consider the left hand limit of f at x = 3
`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)-h/h=-1`
consider the right hand limit of f at x=3
`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)h/h=-1`
Since the left and right hand limits are not equal, f is not differentiable at x = 3.
APPEARS IN
संबंधित प्रश्न
Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.
Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`
Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`
Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`
Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.
Using mathematical induction prove that `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.
Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if x < 0),(3"," , if x >= 0):}` is continuous at x = 0
Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.
Find the relationship between 'a' and 'b' so that the function 'f' defined by
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if } & x < 0 \\ 0 , & \text{ if } & 0 \leq x \leq 1 \\ 4x , & \text{ if } & x > 1\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if } x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]
Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if } x \neq 0 \\ - 1 , & \text{ if } x = 0\end{cases}\]
Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4.
If f(x) = `{{:("a"x + 1, "if" x ≥ 1),(x + 2, "if" x < 1):}` is continuous, then a should be equal to ______.
Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.
If f(x) `= sqrt(4 + "x" - 2)/"x", "x" ne 0` be continuous at x = 0, then f(0) = ____________.
The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are
How many point of discontinuity for the following function in its. domain.
`f(x) = {{:(x/|x|",", if x < 0),(-1",", if x ≥ 0):}`
`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity
`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at
Sin |x| is a continuous function for
Let a, b ∈ R, b ≠ 0. Define a function
F(x) = `{{:(asin π/2(x - 1)",", "for" x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`
If f is continuous at x = 0, then 10 – ab is equal to ______.
If functions g and h are defined as
g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`
and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`
If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.
Let α ∈ R be such that the function
f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`
is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.
Find the value of k for which the function f given as
f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),( k",", if x = 0 ):}`
is continuous at x = 0.
If f(x) = `{{:((kx)/|x|"," if x < 0),( 3"," if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.
Consider the graph `y = x^(1/3)`
Statement 1: The above graph is continuous at x = 0
Statement 2: The above graph is differentiable at x = 0
Which of the following is correct?