Advertisements
Advertisements
प्रश्न
Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.
उत्तर
`f(x)=|x-3|={(3-x, x<3),(x-3,x>=3) :}`
Let c be a real number.
Case I: c < 3. Then f (c) = 3 − c.
`lim_(x->c)f(x)=lim_(x->c)(3-x)=3-c`
Since `lim_(x->c)f(x)=f(c)` f is continuous at all negative real numbers.
Case II: c = 3. Then f (c) = 3 − 3 = 0
`lim_(x->c)f(x)=lim_(x->c)(x-3)=3-3=0`
Since , `lim_(x->3)f(x)=f(3)` ,f is continuous at x = 3.
Case III: c > 3. Then f (c) = c − 3.
`lim_(x->c)f(x)=lim_(x->c)(x-3)=c-3`
Since `lim_(x->c)f(x)=f(c)` f is continuous at all positive real numbers.
Therefore, f is continuous function.
We will now show that f(x)=|x-3|,x in R is not differentiable at x = 3.
Consider the left hand limit of f at x = 3
`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)-h/h=-1`
consider the right hand limit of f at x=3
`lim_(h->0^-)(f(3+h)-f(3))/h=lim_(h->0^-)(|3+h-3|-|3-3|)/h=lim_(h->0^-)(|h|-0)/h=lim_(h->0^-)h/h=-1`
Since the left and right hand limits are not equal, f is not differentiable at x = 3.
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity
`f(x)=(4^x-e^x)/(6^x-1)` for x ≠ 0
`=log(2/3) ` for x=0
Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Examine the continuity of the function f(x) = 2x2 – 1 at x = 3.
Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}` continuous at x = 0? At x = 1? At x = 2?
Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`
Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|/x , if x != 0),(0, if x = 0):}`
Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`
Examine the continuity of f, where f is defined by `f(x) = {(sin x - cos x, if x != 0),(-1, "," if x = 0):}`
Find all the points of discontinuity of f defined by `f(x) = |x| - |x + 1|`.
Using mathematical induction prove that `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.
Determine the value of the constant 'k' so that function f(x) `{((kx)/|x|, ","if x < 0),(3"," , if x >= 0):}` is continuous at x = 0
Prove that the function
Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if } x \neq 0 \\ - 1 , & \text{ if } x = 0\end{cases}\]
Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`
If f(x) = `{{:("a"x + 1, "if" x ≥ 1),(x + 2, "if" x < 1):}` is continuous, then a should be equal to ______.
`lim_("x" -> pi/2)` [sinx] is equal to ____________.
The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is
The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =
`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity
Let a, b ∈ R, b ≠ 0. Define a function
F(x) = `{{:(asin π/2(x - 1)",", "for" x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`
If f is continuous at x = 0, then 10 – ab is equal to ______.
If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.
If functions g and h are defined as
g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`
and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`
If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.
Let α ∈ R be such that the function
f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`
is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.
If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.