Advertisements
Advertisements
प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
उत्तर
It is given that:
`y=log[x+sqrt(x^2+a^2)]`
Differentiating equation (1) with respect to x, we get
`dy/dx=(1+x/sqrt(x^2+a^2))/(x+sqrt(x^2+a^2))`
`dy/dx=1/sqrt(x^2+a^2)..........(2)`
`xdy/dx=x/sqrt(x^2+a^2)...........(3)`
Again differentiating equation (2) with respect to x, we get
`(d^2y)/(dx^2)=-x/(x^2+a^2)^(3/2)`
`(x^2+y^2)(d^2y)/(dx^2)=-x/sqrt(x^2+a^2)..............(4)`
Adding equation (3) and (4), we get
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=-x/sqrt(x^2+a^2)+x/sqrt(x^2+a^2)=0`
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=0`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
Find the second order derivatives of the following : x3.logx
Find the second order derivatives of the following : log(logx)
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`