मराठी

If y=log[x+sqrt(x^2+a^2)] show that (x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0 - Mathematics

Advertisements
Advertisements

प्रश्न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

उत्तर

 

It is given that:

`y=log[x+sqrt(x^2+a^2)]`

Differentiating equation (1) with respect to x, we get

`dy/dx=(1+x/sqrt(x^2+a^2))/(x+sqrt(x^2+a^2))`

`dy/dx=1/sqrt(x^2+a^2)..........(2)`

`xdy/dx=x/sqrt(x^2+a^2)...........(3)`

Again differentiating equation (2) with respect to x, we get

`(d^2y)/(dx^2)=-x/(x^2+a^2)^(3/2)`

`(x^2+y^2)(d^2y)/(dx^2)=-x/sqrt(x^2+a^2)..............(4)`

Adding equation (3) and (4), we get

`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=-x/sqrt(x^2+a^2)+x/sqrt(x^2+a^2)=0`

`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=0`

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×