Advertisements
Advertisements
प्रश्न
`2^(cos^(2_x)`
उत्तर
Let y = `2^(cos^(2_x)`
Taking log on both sides, we get
log y = `log 2^(cos^(2_x)`
⇒ log y = `cos^2x * log 2`
Differentiating both sides w.r.t. x
⇒ `1/y * "dy"/"dx" = log 2* "d"/"dx" cos^2x`
⇒ `1/y * "dy"/"dx" = log 2 [2 cos x * "d"/"dx" cos x]`
⇒ `1/y * "dy"/"dx" = log 2 [2 cos x(-sin x)]`
⇒ `1/y * "dy"/"dx" = log 2 (- sin 2x)`
`"dy"/"dx" = - y * log 2 sin 2x`
Hence, `"dy"/"dx" = -2^(cos^2x) (log 2 sin 2x)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`