Advertisements
Advertisements
प्रश्न
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
उत्तर
`(sin "x")^"y" = "x" + "y"`
Take log on both the sides,
`log(sin "x")^"y" = log("x" + "y")`
⇒ `"y" log (sin "x") = log ("x" + "y")` ......(i)
Differentiate (i) w.r.t.x
`log (sin "x")· (d"y")/(d"x") + "y"· (d)/(d"x") [ log(sin "x")] = (d)/(d"x") [log ("x"+"y") ]`
⇒ `log (sin "x")· (d"y")/(d"x") + "y"· (cos "x")/(sin"x") = (1)/(("x"+"y"))· (1+ (d"y")/(d"x"))`
⇒ `(d"y")/(d"x") [ log( sin "x") - (1)/(("x"+"y"))] = (1)/(("x"+"y")) - "y"·cot "x" `
⇒ `(d"y")/(d"x") = (1 - ("xy" + "y"^2)·cot "x")/(("x"+"y")·log (sin "x") -1)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
Find `dy/dx` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
The derivative of log x with respect to `1/x` is ______.