Advertisements
Advertisements
प्रश्न
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
पर्याय
1
0
9
cos x – sin x
उत्तर
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` 0.
Explanation:
`y = 25^(log_5 sinx) + 16^(log_4 cosx)`
`y = 5^(2 log_5 sinx) + 4^(2 log_4 cosx)`
`y = 5^(log_5 sin^2x) + 4^(log_4 cos^2x) ...[m log n = log n^3]`
y = sin2x + cos2x ...[alogax = x]
y = 1
then `dy/dx = 0`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`8^x/x^8`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`