Advertisements
Advertisements
प्रश्न
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
उत्तर
x = sin–1(et), y = `sqrt(1 - e^(2t))`
Differentiating x and y w.r.t. t, we get
`dx/dt = d/dt[sin^-1(e^t)]`
= `(1)/sqrt(1 - (e^t)^2).d/dt(e^t)`
= `(1)/sqrt(1 - e^(2t)) xx e^t = e^t/sqrt(1 - e^(2t))` and
`dy/dt = d/dt(sqrt(1 - e^(2t)))`
= `(1)/(2sqrt(1 - e^(2t))).d/dt(1 - e^(2t))`
= `(1)/(2sqrt(1 - e^(2t))). xx (0 - e^(2t) xx 2)`
= `(-e^(2t))/sqrt(1 - e^(2t))`
∴ `dy/dx = ((dy/dt))/((dx/dt)`
= `(((-e^(2t))/sqrt(1 - e^(2t))))/(((e^t)/sqrt(1 - e^(2t)))`
= – et
= – sin x ...[∵ x = sin–1(et)]
∴ `sin x + dy/dx` = 0.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`8^x/x^8`
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
If xy = yx, then find `dy/dx`