Advertisements
Advertisements
प्रश्न
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
उत्तर १
x = a cos3t, y = a sin3t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = a"d"/"dt"(cost)^3 = a.3(cost)^2"d"/"dt"(cost)`
= 3acos2t(– sint) = –3a cos2t sint
and
`"dy"/"dt" = a"d"/"dt"(sint)^3`
= `a.3(sin t)^2"d"/"dt"(sin t)`
= 3a sin2t. cos t
∴ `"dy"/"dx" = ((dy/dt))/((dx/"dt")`
= `(3a sin^2tcost)/(-3a cos^2tsint)`
= `-"sint"/"cost"` ...(1)
Now, x = a cos3t
∴ cos3t = `x/a`
∴ cos t = `(x/a)^(1/3)`
y = a sin3t
∴ sin3t = `y/a`
∴ cos3t = `(y/a)^(1/3)`
∴ from (1), `"dy"/"dx" = -(y^(1/3)/a^(1/3))/(x^(1/3)/a^(1/3)`
= `-(y/x)^(1/3)`
उत्तर २
Alternative Method :
x = a cos3t, y = a sin3t
∴ `cos^3t = x/a, sin^3t = y/a`
∴ `cos t = (x/a)^(1/3), sin t = (y/a)^(1/3)`
∴ cos2t + sin2t = 1 gives
`(x/a)^(2/3) + (y/a)^(2/3)` = 1
∴ `x^(2/3) + y^(2/3) =a^(2/3)`
Differentiating both sides w.r.t. t, we get
`(2)/(3)x^((-1)/(3)) + (2)/(3)y^((-1)/(3)),"dy"/"dx"` = 0
∴ `(2)/(3)y^((-1)/(3))"dy"/"dx" = -(2)/(3)x^((-1)/(3)`
∴ `"dy"/"dx" = -(x/y)^(-1/3) = -(y/x)^(1/3)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `"dy"/"dx"` if y = xx + 5x
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Differentiate 3x w.r.t. logx3.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`