Advertisements
Advertisements
प्रश्न
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
उत्तर
(3xy + y2) dx + (x2 + xy) dy = 0
`(dy)/(dx) = - ((3xy + y^2)/(x^2 + xy))`
Put y = vx ⇒ `(dy)/(dx) = v + x (dv)/(dx)`
`v + x (dv)/(dx) = - ((3x . vx + v^2 x^2)/(x^2 + x . vx))`
` x (dv)/(dx) = (-3v - v^2)/(1 + v) - v`
` x (dv)/(dx) = (-3v - v^2 - v - v^2)/(1 + v) `
` x (dv)/(dx) = (-2v^2 - 4v)/(1 + v)`
`(1 + v)/(2v^2 + 4v) "dv" = -(1)/(x) "dx"`
` int_ (1 + v)/(2v^2 + 4v) "dv" = int_ -(1)/(x) "dx"`
` 1/4 int_ (2 + 2v)/(2v + v^2) "dv" = - int_ (1)/(x) "dx"`
`1/4 log | v^2 + 2v| = - log | x | + c`
`1/4 log ((y^2)/(x^2) + 2 (y)/(x)) . x = c `
`log ((y^2)/(x) + 2y) = 4c`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
Find the second order derivatives of the following : log(logx)
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
The derivative of x2x w.r.t. x is ______.