मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate 3x w.r.t. logx3. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate 3x w.r.t. logx3.

बेरीज

उत्तर

Let u = 3x and v = logx3.
Then we want to find `"du"/"dv"`.
Differentiating u and v w.r.t. x, we get
`"du"/"dv" = "d"/"dx"(3^x)`
= 3x.log3
and
`"dv"/"dx" = "d"/"dx"(log_x3)`

= `"d"/"dx"((log3)/(logx))`

= `log3."d"/"dx"(logx)^-1`

= `(log3)(-1)(logx)^-2."d"/"dx"(logx)`

= `(-log3)/(logx)^2 xx (1)/x`

= `(-log3)/(x(logx)^2`

∴ `"du"/"dv" = (("du"/"dx"))/(("dv"/"dx")`

= `(3^x.log3)/([(-log3)/(x(logx)^2)]`
= – x(log x)2.3x.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४९]

APPEARS IN

संबंधित प्रश्‍न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `"dy"/"dx"` if y = xx + 5x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If y = (log x)x + xlog x, find `"dy"/"dx".`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Find the second order derivatives of the following : log(logx)


Find the nth derivative of the following : log (ax + b)


Find the nth derivative of the following : log (2x + 3)


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`8^x/x^8`


`log [log(logx^5)]`


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×