Advertisements
Advertisements
प्रश्न
Find the nth derivative of the following : log (2x + 3)
उत्तर
Let y = log (2x + 3)
Then `"dy"/"dx" = "d"/"dx"[log(2x + 3)]`
= `(1)/(2x + 3)."d"/"dx"(2x + 3)`
= `(1)/(2x + 3) xx (a xx 1 + 0)`
= `a/"2x + 3"`
`(d^2y)/(dx^2) = "d"/"dx"(a/(2x + 3))`
= `a"d"/"dx"(2x + 3)^-1`
= `a(-1)(2x + 3)^-2."d"/"dx"(2x + 3)`
= `((-1)a)/((2x + 3)^2) xx (a xx 1 + 0)`
= `((-1)a)/((2x + 3)^2)`
`(d^3y)/(dx^3) = "d"/"dx"[((-1)^1a^2)/(2x + 3)^2]`
= `(-1)^1a^2."d"/"dx"(2x + 3)^-2`
= `(-1)^1a^2.(-2)(2x + 3)^-3."d"/"dx"(2x + 3)`
= `((-1)^2. 1.2.a^2)/(2x + 3)^3 xx (a xx 1 + 0)`
= `((-1)_^2.2! a^3)/(2x + 3)^3`
In general, the nth order derivative is given by
`(d^ny)/(dx^2) = ((-1)^(n - 1).(n - 1)!2^n)/(2x + 3)^n`.
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Find `dy/dx` for the function given in the question:
yx = xy
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`