Advertisements
Advertisements
प्रश्न
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
उत्तर
y = A cos (log x) + B sin (log x) ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "A""d"/"dx"[cos(logx)] + "B""d"/"dx"[sin(log x)]`
= `"A"[-sin (logx)]."d"/"dx"(logx) + "B"cos(logx)."d"/"dx"(logx)`
= `"A"sin(logx) xx (1)/x "B"cos(logx) xx(1)/x`
∴ `x"d"/"dx"(dy/dx) + "dy"/"dx"."d"/"dx"(x) = -"A""d"/"dx"[sin(logx)] +"B""d"/"dx"[cos(logx)]`
∴ `x(d^2y)/(dx2) + "dy"/"dx" xx 1 = -"A"cos(logx)."d"/"dx"(logx) + "B"[-sin(logx)]."d"/"dx"(logx)`
∴ xy2 + y1 = `-"A"cos(logx) xx(1)/x - "B"sin(logx) xx (1)/x`
∴ x2y2 + xy1 = – [A cos (log x) + B sin (log x)] ...[By (1)]
∴ x2y2 + xy1 + y = 0.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the second order derivatives of the following : log(logx)
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.