English

If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.

Sum

Solution

y = A cos (log x) + B sin (log x)            ...(1)
Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "A""d"/"dx"[cos(logx)] + "B""d"/"dx"[sin(log x)]`

= `"A"[-sin (logx)]."d"/"dx"(logx) + "B"cos(logx)."d"/"dx"(logx)`

= `"A"sin(logx) xx (1)/x "B"cos(logx) xx(1)/x`

∴ `x"d"/"dx"(dy/dx) + "dy"/"dx"."d"/"dx"(x) = -"A""d"/"dx"[sin(logx)] +"B""d"/"dx"[cos(logx)]`

∴ `x(d^2y)/(dx2) + "dy"/"dx" xx 1 = -"A"cos(logx)."d"/"dx"(logx) + "B"[-sin(logx)]."d"/"dx"(logx)`

∴ xy2 + y1 = `-"A"cos(logx) xx(1)/x - "B"sin(logx) xx (1)/x`

∴ x2y2 + xy1 = – [A cos (log x) + B sin (log x)]  ...[By (1)]

∴ x2y2 + xy1 + y = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 7.4 | Page 64

RELATED QUESTIONS

Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (ax + b)


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


`"d"/"dx" [(cos x)^(log x)]` = ______.


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×