Advertisements
Advertisements
Question
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
Solution
y = `x^(x^(x^(.^(.^.∞))`
∴ log y = `log(x^(x^(x^(.^(.^.∞)))))`
= `x^(x^(x^(.^(.^.∞)))).logx`
∴ log y = y log x ...(1)
Differentiating both sides w.r.t. x, we get
`(1)/y.dy/dx = y.d/dx(logx) + (logx)dy/dx`
∴ `(1)/ydy/dx = y xx (1)/x + (logx)dy/dx`
∴ `(1/y - logx)dy/dx = y/x`
∴ `((1 - ylogx)/(y))dy/dx"= y/x`
∴ `dy/dx = y^2/(x(1 - ylogx)`
∴ `dy/dx = y^2/(x(1 - logy)`. ...[By (1)]
APPEARS IN
RELATED QUESTIONS
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
`2^(cos^(2_x)`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (log x)x.