Advertisements
Advertisements
Question
if xx+xy+yx=ab, then find `dy/dx`.
Solution 1
xx+xy+yx=ab........(i)
`Let u=x^x`
`log u=xlogx`
`1/u*(du)/dx=x * 1/x+logx`
`therefore (du)/dx=x^x(1+logx)`
`Let v=x^y`
`logv =ylogx`
`1/v (dv)/dx=(y/x+logx dy/dx)`
`therefore (dv)/dx=x^y(y/x+logx dy/dx)`
`Let w=y^x`
`logw=x log y`
`1/w.(dw)/dx=(x/y*dy/dx+logy)`
`therefore (dw)/dx=y^x(logy+x/y*dy/dx)`
(i) can be written as
u + v + w = ab
`du/dx+dv/dx+dw/dx=0`
`=>x^x+x^xlogx+x^yy/x+x^y logx dy/dx+y^xlogy+y^x x/y dy/dx=0`
`=>dy/dx(x^ylogx+y^x x/y)=x^x+x^xlogx+x^y y/x+ y^x logy`
`=> dy/dx (x^y*logx+xy^(x-1))=(x^x+x^xlogx+yx^(y-1)+y^x*logy)`
`therefore dy/dx=(x^x+x^xlogx+yx^(y-1)+y^x*logy)/(x^y*logx+xy^(x-1))`
Solution 2
Let u = xy and v = yx
Then, u + v = ab
Differentiating both sides w.r.t x, we get
RELATED QUESTIONS
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
`d/dx(x^{sinx})` = ______
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.