Advertisements
Advertisements
Question
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Solution
y = log (log 2x)
∴ `"dy"/"dx" = "d"/"dx"[log(log2x)]`
= `(1)/"log2x"."d"/"dx"(log2x)`
= `(1)/"log2x" xx (1)/(2x)."d"/"dx"(2x)`
= `(1)/"log2x" xx (1)/(2x) xx 2`
∴ `"dy"/"dx" = (1)/(xlog2x)`
∴ `(log2x)."dy"/"dx" = (1)/x` ...(1)
Differentiating both sides w.r.t. x, we get
`(log2x)."d"/"dx"(dx/dy) + "dy"/"dx"."d"/"dx"(log2x) = "d"/"dx"(1/x)`
∴ `(log2x).(d^2y)/(dx^2) + "dy"/"dx".(1)/(2x)."d"/"dx"(2x) = -(1)/x^2`
∴ `(log2x).(d^2y)/(dx^2) + "dy"/"dx".(1)/(2x) xx 2 = -(1)/x^2`
∴ `(log2x).(d^2y)/(dx^2) + (1)/x."dy"/"dx" = (1)/x.(1)/x`
∴ `(log2x).(d^2y)/(dx^2) + [(log2x)."dy"/"dx"]"dy"/"dx" = -(1)/x[(log2x)."dy"/"dx"]` ...[By (1)]
Dividing throughout by log 2x, we get
`(d^2y)/(dx^2) + (dy/dx)^2 = -(1)/x"dy"/"dx"`
∴ `x(d^2y)/(dx^2) + x(dy/dx)^2 = -"dy"/"dx"`
∴ `x(d^2y)/(dx^2) + "dy"/"dx" + x(dy/dx)^2` = 0
∴ `x(d^2y)/(dx^2) + "dy"/"dx" (1 + xdy/dx)` = 0
∴ xy2 + y1 (1 + xy1) = 0.
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
`2^(cos^(2_x)`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.