Advertisements
Advertisements
Question
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Solution
(i) By using the product rule.
Let, y = (x2 – 5x + 8). (x3 + 7x + 9)
Differentiating both sides with respect to x,
`dy/dx = (x^2 = 5x + 8) d/dx(x^3 + 7x + 9) + (x^3 + 7x + 9) d/dx (x^2 - 5x + 8)`
`dy/dx = (x^2 - 5x + 8) (3x^2 + 7) + (x^3 + 7x + 9)(2x - 5)`
`= 3x^2 (x^2 - 5x + 8) + 7 (x^2 - 5x + 8) + 2x (x^3 + 7x + 9) - 5 (x^3 + 7x + 9)`
`= 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56 + 2x^4 + 14x^2 + 18 x - 5x^3 - 35 x - 45` ...(1)
`= 5x^4 - 20x^3 + 45x^2 - 52x + 11` ....(1)
(ii) By expanding the product to obtain a single polynomial
y = (x² – 5x + 8) (x3 + 7x + 9)
`= x^2 (x^3 + 7x + 9) - 5x (x^3 + 7x + 9) + 8 (x^3 + 7x + 9)`
`= x^5 + 7x^3 + 9x^2 - 5x^4 - 35x^2 - 45x + 8x^3 + 56x + 72`
`= x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72`
Differentiating both sides with respect to x,
`dy/dx = 5x^4 - 20x^3 + 45x^2 - 52x + 11` ...(2)
(iii) By logarithmic differentiation.
Let, y = (x² – 5x + 8) (x3 + 7x + 9)
Taking logarithm of both sides,
log y = log (x² – 5x + 8) + log (x3 + 7x + 9) ...[∵ log (mn) = log m + log n]
Differentiating both sides with respect to x,
`1/y dy/dx = 1/(x^2 - 5x + 8) d/dx (x^2 - 5x + 8) + 1/(x^3 + 7x + 9) d/dx (x^3 + 7x + 9)`
`= (2x - 5)/(x^2 - 5x + 8) + (3x^2 + 7)/(x^3 + 7x + 9)`
`= ((2x - 5)(x^3 + 7x + 9) + (3x^2 + 7) (x^2 - 5x + 8))/((x^2 - 5x + 8)(x^3 + 7x + 9))`
`therefore dy/dx = y [(2x (x^3 + 7x + 9) - 5 (x^3 + 7x + 9) + 3x^2 (x^2 - 5x + 8) + 7 (x^2 - 5x + 8))/((x^2 - 5x + 8)(x^3 + 7x + 9))]`
`= (x^2 - 5x + 8) (x^3 + 7x + 9) [(2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56)/((x^2 - 5x + 8)(x^3 + 7x + 9))]`
= 5x4 - 20x3 + 45x2 - 52x + 11 ...(3)
It is clear from equations (1), (2) and (3) that the values of `dy/dx` are equal.
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`