Advertisements
Advertisements
प्रश्न
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
उत्तर
(i) By using the product rule.
Let, y = (x2 – 5x + 8). (x3 + 7x + 9)
Differentiating both sides with respect to x,
`dy/dx = (x^2 = 5x + 8) d/dx(x^3 + 7x + 9) + (x^3 + 7x + 9) d/dx (x^2 - 5x + 8)`
`dy/dx = (x^2 - 5x + 8) (3x^2 + 7) + (x^3 + 7x + 9)(2x - 5)`
`= 3x^2 (x^2 - 5x + 8) + 7 (x^2 - 5x + 8) + 2x (x^3 + 7x + 9) - 5 (x^3 + 7x + 9)`
`= 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56 + 2x^4 + 14x^2 + 18 x - 5x^3 - 35 x - 45` ...(1)
`= 5x^4 - 20x^3 + 45x^2 - 52x + 11` ....(1)
(ii) By expanding the product to obtain a single polynomial
y = (x² – 5x + 8) (x3 + 7x + 9)
`= x^2 (x^3 + 7x + 9) - 5x (x^3 + 7x + 9) + 8 (x^3 + 7x + 9)`
`= x^5 + 7x^3 + 9x^2 - 5x^4 - 35x^2 - 45x + 8x^3 + 56x + 72`
`= x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72`
Differentiating both sides with respect to x,
`dy/dx = 5x^4 - 20x^3 + 45x^2 - 52x + 11` ...(2)
(iii) By logarithmic differentiation.
Let, y = (x² – 5x + 8) (x3 + 7x + 9)
Taking logarithm of both sides,
log y = log (x² – 5x + 8) + log (x3 + 7x + 9) ...[∵ log (mn) = log m + log n]
Differentiating both sides with respect to x,
`1/y dy/dx = 1/(x^2 - 5x + 8) d/dx (x^2 - 5x + 8) + 1/(x^3 + 7x + 9) d/dx (x^3 + 7x + 9)`
`= (2x - 5)/(x^2 - 5x + 8) + (3x^2 + 7)/(x^3 + 7x + 9)`
`= ((2x - 5)(x^3 + 7x + 9) + (3x^2 + 7) (x^2 - 5x + 8))/((x^2 - 5x + 8)(x^3 + 7x + 9))`
`therefore dy/dx = y [(2x (x^3 + 7x + 9) - 5 (x^3 + 7x + 9) + 3x^2 (x^2 - 5x + 8) + 7 (x^2 - 5x + 8))/((x^2 - 5x + 8)(x^3 + 7x + 9))]`
`= (x^2 - 5x + 8) (x^3 + 7x + 9) [(2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56)/((x^2 - 5x + 8)(x^3 + 7x + 9))]`
= 5x4 - 20x3 + 45x2 - 52x + 11 ...(3)
It is clear from equations (1), (2) and (3) that the values of `dy/dx` are equal.
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
Find the second order derivatives of the following : x3.logx
If f(x) = logx (log x) then f'(e) is ______
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.