मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If x = esin3t, y = ecos3t, then show that dydxdydx=-ylogxxlogy. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.

बेरीज

उत्तर

x = esin3t, y = ecos3t 
∴ log x = logesin3t, logy = logecos3t
∴ log x = (sin 3t)(log e), log y = (cos 3t)(log e)
∴ log x = sin 3t, log y = cos 3t ...(1) ... [∵ log e = 1]
Differentiating both sides w.r.t. t, we get
`(1)/x.dx/dt = d/dt(sin3t) = cos3t.d/dt(3t)`
= cos 3t x 3

= 3 cos 3t
and
`(1)/y.dy/dt = d/dt(cos 3t) = -sin3t.d/dx(3t)`
= – sin 3t x 3

= – 3 sin 3t
∴ `dx/dt = 3x cos 3t and dy/dt"= -3y sin 3t`

∴ `dy/dx = ((dy/dt))/((dx/dt)`

= `(-3y sin 3t)/(3x cos 3t)`

= `(-y sin 3t)/(x cos 3t)`

= `(-y log x)/(x log y)`.                     ...[By (1)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Find `dy/dx` for the function given in the question:

yx = xy


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (ax + b)


If f(x) = logx (log x) then f'(e) is ______


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×