Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
उत्तर
Let y = `(x + 1/x)^x + x^((1+1/x)) = u +v`
Where `u = (x + 1/x)^x and v= x ^(1+1/x)`
Differentiating the above w.r.t.x we get
`dy/dx = (du)/dx + (dv)/dx` .....(i)
Now, `u = (x + 1/x)^x`
Taking log on both sides,we get,
`= logu - x log (x + 1/x)` ......(ii)
Differentiating (ii) w.r.t. x, we get
`1/u (du)/dx = x d/dx log (x + 1/x) + log (x + 1/x)(1)`
= `x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)`
= `(du)/dx = (x + 1/x)^x [x/(x + 1/x)(1 - 1/x^2) + log (x + 1/x)]` ....(iii)
Also, `v = x^((1 + 1/x))`
Taking log on both sides, we get,
`log v = (1 + 1/x) log x` ....(iv)
Differentiating (iv) w.r.t. x, we get,
`1/v (dv)/dx = (1 + 1/x)d/dx log x + log x d/dx (1 + 1/x)`
= `(1 + 1/x) 1/x + log x (-1/x^2)`
`(dv)/dx = x^(1+1/x) [(1 + 1/x) 1/x + log x ((-1)/x^2)]` ....(v)
Substituting the value of (iii) and (v) in (i), we get,
`dy/dx = (x + 1/x)^x [x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)] + x^((1 + 1/x)) [(1 + 1/x) 1/x + log x (-1/x^2)]`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `dy/dx` if y = xx + 5x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`log (x + sqrt(x^2 + "a"))`
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`