Advertisements
Advertisements
प्रश्न
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
उत्तर
x = log(1 + t2), y = t – tan–1t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = "d"/"dt"[log(1 + t^2)]`
= `(1)/(1 + t^2)."d"/"dt"(1 - t^2)`
= `(1)/(1 + t^2) xx (0 + 2t)`
= `(2t)/(1 + t^2)`
and
`"dy"/"dt" = "d"/"dt"(t) - "d"/"dt"(tan^-1t)`
= `1 - (1)/(1 + t^2)`
= `(1 + t^2 - 1)/(1 + t^2)`
= `t^2/(1 + t2)`
∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")`
= `(((t2)/(1 + t^2)))/(((2t)/(1 + t^2))`
= `t/(2)`
Now, x = log (1 + t2)
∴ 1 + t2 = ex
∴ t2 = ex - 1
∴ t = `sqrt(e^x - 1)`
∴ `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
Differentiate 3x w.r.t. logx3.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
Derivative of loge2 (logx) with respect to x is _______.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
If xy = yx, then find `dy/dx`