मराठी

Differentiate the function with respect to x. xsin x + (sin x)cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

xsin x + (sin x)cos x

बेरीज

उत्तर

Let, xsin x + (sin x)cos x

Again, let y = u + v

Differentiating both sides with respect to x,

`(dy)/dx = (du)/dx + (dv)/dx`    ...(1)

अब, u = xsin x

Taking logarithm of both sides,

log u = log xsin x = sin x log x

On differentiating both sides with respect to,

`1/u du/dx = sin x d/dx log x + log x d/dx sin x`

 = `sin x . 1/x + log x * cos x = cos x log x + sin x/x`

`therefore (du)/dx = u (cos x log x + (sin x)/x) = x^(sin x) (cos x log x + (sin x)/x)`   ....(2)

and v = (sin x)cos x

Taking logarithm of both sides,

log v = log (sin x)cos x = cos x log sin x

On differentiating both sides with respect to,

`1/v (dv)/dx = cos x  d/dx log sin x + log sin x  d/dx  cos x`

`= cos x * 1/(sin x) d/dx  sin x + log sin x * (- sin x)`

`= cos x * 1/sin x * cos x - sin x log sin x`

`= - sin x log sin x + cot x * cos x`

`therefore dv/dx = v [-sin x log sin x + cot x cos x]`

`= (sin x)^(cos x) [-sin x log sin x + cot x cos x]`          ....(3)

Putting the values ​​of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1), we get,

`therefore dy/dx = (du)/dx + (dv)/dx`

`= x^(sin x) (cos x log x + sin x/x) + (sin x)^(cos x) [- sin x log sin x +cot x cos x]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.5 | Q 9 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (ax + b)


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`2^(cos^(2_x)`


`log [log(logx^5)]`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


The derivative of log x with respect to `1/x` is ______.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×