मराठी

Find dydxfor the function given in the question: xy + yx = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find `dy/dx`for the function given in the question:

xy + yx = 1

बेरीज

उत्तर

Given, ∵ xy + yx = 1

Let, u = xy, v = yx    ∵ u + v = 1

Differentiating both sides with respect to x,

`1/u (du)/dx = d/dx y log x`

`= y d/dx log x +log x d/dx (y)`

`= y * 1/x + log x * dy/dx = y/x + log x dy/dx`

`therefore (du)/dx = u [y/x + log x dy/dx]`

`= x^y [y/x + log x dy/dx]`   ...(2)

Now, v = yx

Taking logarithm of both sides, log, log v = log yx = x log y

Differentiating both sides with respect to ,

`1/v (dv)/dx = d/dx x log y`

`= x d/dx log y +log y d/dx (x)`

`= x * 1/y + log yxx 1 = x/y dy/dx + log y`

`therefore (dv)/dx = v [x/y dy/dx + log y]`

`= y^x [x/y dy/dx + log y]`       ...(3)

From equation (2) and (3), putting the values ​​of `(du)/dx` and `(dv)/dx` in equation (1),

`therefore x^y [(log x)  dy/dx + y/x] + y^x [log y + x/y  dy/dx] = 0`

`therefore (x^y log x + xy^x/y) dy/dx + x^y * y/x + y^x log y = 0`

`therefore (x^y log x + x y^(x - 1)) dy/dx + yx^(y - 1) + y^x log y = 0`

`therefore dy/dx = (yx^(y - 1) + y^x log y)/(x^y log x + x y^(x - 1))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.5 | Q 12 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (2x + 3)


If f(x) = logx (log x) then f'(e) is ______


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`d/dx(x^{sinx})` = ______ 


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`log [log(logx^5)]`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


The derivative of x2x w.r.t. x is ______.


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Find `dy/dx`, if y = (log x)x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×