Advertisements
Advertisements
प्रश्न
Find `dy/dx`for the function given in the question:
xy + yx = 1
उत्तर
Given, ∵ xy + yx = 1
Let, u = xy, v = yx ∵ u + v = 1
Differentiating both sides with respect to x,
`1/u (du)/dx = d/dx y log x`
`= y d/dx log x +log x d/dx (y)`
`= y * 1/x + log x * dy/dx = y/x + log x dy/dx`
`therefore (du)/dx = u [y/x + log x dy/dx]`
`= x^y [y/x + log x dy/dx]` ...(2)
Now, v = yx
Taking logarithm of both sides, log, log v = log yx = x log y
Differentiating both sides with respect to ,
`1/v (dv)/dx = d/dx x log y`
`= x d/dx log y +log y d/dx (x)`
`= x * 1/y + log yxx 1 = x/y dy/dx + log y`
`therefore (dv)/dx = v [x/y dy/dx + log y]`
`= y^x [x/y dy/dx + log y]` ...(3)
From equation (2) and (3), putting the values of `(du)/dx` and `(dv)/dx` in equation (1),
`therefore x^y [(log x) dy/dx + y/x] + y^x [log y + x/y dy/dx] = 0`
`therefore (x^y log x + xy^x/y) dy/dx + x^y * y/x + y^x log y = 0`
`therefore (x^y log x + x y^(x - 1)) dy/dx + yx^(y - 1) + y^x log y = 0`
`therefore dy/dx = (yx^(y - 1) + y^x log y)/(x^y log x + x y^(x - 1))`
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If f(x) = logx (log x) then f'(e) is ______
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.