Advertisements
Advertisements
प्रश्न
Differentiate : log (1 + x2) w.r.t. cot-1 x.
उत्तर
Let u =log (1 + x2)
v = cot-1 x
To differentiate log ( 1 + x2) w.r.t. cot-1 x is to find `"du"/"dv"`
Here u =log (1 + x2J and u = cot-1 x,
where x is a parameter.
Differentiating w.r.t. x,
`"du"/"dx" = 1/(1 + "x"^2) xx "2x" , "dv"/"dx" = (-1)/(1 + "x"^2)`
`therefore "du"/"dv" = (("du"/"dx"))/(("dv"/"dx")) , "du"/"dx" != 0`
`= (("2x")/(1+"x"^2))/((-1)/(1 + "x"^2)) = "-2x"`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.